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ABSTRACT

An investigation of thermal convection in a thin layer of fluid has recently been reported (Herring,1963).
The calculation included only those nonlinearities having the form of an interaction of a fluctuating quan-
tity with the mean temperature field. In addition, free boundary conditions were employed and the fluctuat-
ing velocity and temperature fields were composed of one horizontal wave number, a. In the present paper,
the calculation is extended to include the effects associated with rigid boundaries and many horizontal
wave numbers.

The results of the multi-« study indicate that the stable steady state solution contains only one «, pro-
vided the Rayleigh number, R, is less than 22108, Above R=¢108, the stable solution contains at least two
o’s. The stable single-a solutions have a somewhat different value of o than either that predicted by the
maximum heat flux principle of Malkus (1954) or that predicted by the relative stability criterion of Malkus
and Veronis (1958). At present, we are not able to characterize the stability of the system by postulating
an extremal for some simple property of the flow.

The value of the Nusselt number found here for rigid boundaries is N=0.115R%, for large R. This value
for N is within ~20 per cent of the experimental value for large Prandtl number fluids. The rms values of the
velocity and temperature fluctuation fields computed here appear to have the form expected for large Prandtl
number fluids. The lack of accurate experimental data prevents us from drawing definite conclusions as to
the numerical accuracy for these quantities, The computed mean temperature profile is qualitatively correct,
but develops a thin stabilizing region with a stable temperature gradient just exterior to the thermal bound-
ary layer. It is concluded that the stabilizing region represents a self-adjustment in the flow which com-
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pensates for the omission of the effects of eddy processes on the equations of motion.

1. Introduction

In a previous paper (Herring, 1963: hereafter re-
ferred to as IPTC) the thermal convection equations
for a thin layer of fluid were investigated numerically.
The procedure used was to include only those non-
linear terms which describe the interaction of the mean
temperature field with a velocity or temperature fluctu-
ation. The terms omitted (the fluctuating interactions)
were discarded in a manner consistent with the con-
servation properties of the fluid. The velocity and
temperature fluctuations obeyed free boundary con-
ditions on horizontal conducting surfaces. The numerical
study was also limited to systems containing only one
horizontal wave number.

In the present paper we extend the calculation to in-
clude systems containing many horizontal wave num-
bers and obeying rigid boundary conditions on the con-
ducting surfaces. The numerical procedure employed
in the present paper is similar to that used in IPTC,
The equations of motion are Fourier analyzed and the
Fourier components are allowed to evolve to their
steady state values from arbitrary initial conditions.
The present calculation differs from that of IPTC in
that we set the Prandtl number, ¢, equal to infinity.

This choice of ¢ allows a simpler formulation of the
problem in Fourier space and makes the transient be-
havior of the systems simpler. The steady state values
of the amplitudes can be seen from the equations of
motion to be independent of o.

The solutions obtained in the present calculations for
rigid boundaries and one horizontal wave number are
qualitatively similar to the corresponding ones for free
boundaries. The velocity and temperature profiles have
a reasonable boundary layer structure and, at large
Rayleigh number (=R), the Nusselt number is found
to be proportional to R¥ provided the horizontal wave
number, «, which supports the convection, is close to
that which maximizes the heat transport. The most
significant difference between the two calculations is
that the rigid boundary system transports much less
heat than the free boundary system. The use of rigid
boundaries reduces the heat transport by a factor of 2.3.
The heat transport for rigid boundaries, without the
fluctuating interactions, is thus within 10 to 30 per cent
of the experimental heat transport, for large Prandtl
number fluids.

The multi-a systems were investigated at small and
intermediate Rayleigh numbers (R<10%). For this
range of Rayleigh numbers, the analysis indicated that



278

the stable steady state contains only one . In this part
of the investigation we include four a’s to represent the
fluctuating fields. These were allowed to evolve from
arbitrary initial conditions to the steady state. In all
cases investigated, the steady state so achieved con-
tained at most only two of the initially excited hori-
zontal wave numbers. However, those steady states
which contained two a’s were found to be unstable to
perturbations of horizontal wave numbers situated
between the wave numbers of the amplitudes surviving
in the above steady state. After its introduction into the
system, the perturbation was found to grow and eventu-
ally to replace one or the other of the original ampli-
tudes. In this manner, it was possible to continue the
calculation until a limiting, completely stable, wave
number was identified with reasonable accuracy. This
stable wave number turned out to be somewhat smaller
than that which maximizes the total heat transport, and
it transports about 20 per cent less heat than the latter.
The R} law was found to be valid for both of the ahove
solutions, for R larger than ~10%

The numerical study was supplemented by a linear
stability analysis of the single-a solutions against in-
finitesimal disturbances at other a’s. For moderate
Rayleigh numbers (R £108), the linear stability study
gave stable solutions which were identical to those
found from studies of systems containing many hori-
zontal wave numbers. ‘At large Rayleigh numbers,
(R2 108), the stability analysis indicates that a steady
state must have at least two o’s in order for it to be
stable. The threshold for the occurrence of the double-«
steady states is at R~105, The numerical study at
R=10°% indicates that these solutions have a strong
component at a small @ and a very weak component at
roughly twice the « of the first component. This second
component, however, makes a negligible contribution
to the total heat transport at R=10%. At larger R, its
contribution may become significant.

The occurrence of the multi-a steady state at large R
is apparently connected with the use of rigid boundaries.
For free boundaries, no such behavior was noted, up to
a Rayleigh number of 105, although at larger R, several
mode solutions may exist for the latter case also.

The results of the multi-a and stability studies may be
used to test the principle of relative stability proposed
by Malkus and Veronis (1958) and Malkus (1959). The
latter principle asserts that the most stable, statistically
steady solution is that which maximizes the square of
the mean temperature gradient averaged throughout
the volume of the fluid. This principle is independent of
the conservative non-linearities in the equations of
motion. Therefore, it should apply equally well to those
equations which omit the fluctuating interactions as it
does to the more realistic complete set of equations.
Our results indicate that the stable solutions are not
those that maximize {(8%). The stable solutions have a
somewhat smaller value of « than that which maximizes
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(6%). However, the difference between the two, as far as
total heat transport is concerned, is not large (~20 per
cent).

As pointed out in IPTC, the convective system which
deletes the fluctuating interactions is very similar to a
theory of convection proposed by Malkus (1954, 1960).
In fact the system considered here is identical to a
reformulation of the Malkus theory by Spiegel (1962)
provided the wave numbers in the nonfluctuating sys-
tem are adjusted so as to keep the mean temperature
gradient everywhere nonnegative.

Our conclusions with regard to the Malkus theory for
the present calculation are substantially the same as
those stated in IPTC. We note, however, that the heat
transport computed here for rigid boundaries is quite
close to the experimental results (within 10-30 per
cent). The present calculation therefore seems to have
good quantitative accuracy as to its prediction for the
total transport of heat. As for the detailed shape of the
mean temperature profile its accuracy is probably not as
satisfactory, although the lack of experimental data pre-
vents us from drawing a definite conclusion on this
point. The mean temperature profiles computed here
develop an overshoot region just outside the boundary
layer, in which a stabilizing gradient develops. This be-
havior is qualitatively the same as that found for the
free boundary calculation.

2. Theory

a) The equations of motion and boundary conditions.
We consider a thin layer of fluid confined between two
perfectly conducting horizontal plates located at z=0
and z=d. The lower plate is maintained at zero de-
grees, and the top at a temperature —7' on an arbi-
frary temperature scale. The equations appropriate for
our system are the Boussinesq approximation to the
Navier-Stokes equations (Chandrasekhar, 1961). In
writing these equations, it is convenient to split up the
temperature field into its horizontal mean, T'(3,f) and
its fluctuation, ®(r,t) from its horizontal mean. The
heat transport equation then splits into two equations—
one for © and one for T'(z,t). The latter equation is
conveniently written in terms of the mean temperature
gradient, 8(z)=—dT/dz. The equations of motion are
written in a nondimensional form, in which the only
parameters appearing are the Prandtl number, o, and
the Rayleigh number R. They are:

V-v=0 (1)

14 1
(-— ;*V2>V2V=R{kV2—VV' } O+-VX (VXV-Vy) (2)
o 0t o

<i~ v2>@=3w—-v- (vO—kw®) 3

a¢
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g 9 9 ___
(G-—)p—+—w @
dt 0z 9z?
where

oT
B(z,t)E~a—(z,t) and v=(U,V,W).
2

In equations (1)-(4), —k denotes the direction of
gravity and the bars in equations (3) and (4) denote an
average over the horizontal. Equation (2) is the double
curl of the momentum equation; hence the pressure
variable is absent. The nondimensional variables
(v,0) are related to the dimensional ones (denoted by
primes) in the following way:

d

v=—v

K
T=T"/T..

We have chosen the units of length to be the distance,
d, between the confining plates and the unit of time to
be d%/k, where k is the thermometric diffusivity of the
fluid.

The boundary condition on the velocity field v is that
it vanishes on the conducting surfaces located at z=0
and z=d. The continuity equation, (1), then implies
that the first vertical derivative of the vertical compo-
nent of the velocity, W, vanishes on the surfaces. In the
nondimensional notation the boundary conditions are

ow oW
W(0,)=—(0,)=W(1,)=-—(1,)=0, (5
0z 0z

0(0,)=0(1,)=0, (6)
T(0,6)=0,

and
and, T(1,)=-—1.

The boundary conditions on @ follow from its definition
as the fluctuation from a horizontal mean, and from the
fact that the confining surfaces at 2=0 and 1 have in-
finite conductivity.

The last terms on the right hand side of (2) and (3),
have the form of the deviation of a bilinear quantity
from its horizontal average (fluctuating interactions).
By deleting these terms and assuming o—c0, we obtain
the system to be investigated:

VAW = —RV20 )
i)
(———— V2 )0=8W 8)
at
9 9 0% ____
(z-—)s-——78, ©
9t 0 022
where
L
V12= — —
dx?  3y?
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There are two more equations for U and V which should
be included in (7), but in the absence of the fluctuating
self-interactions these are not necessary to make the set
(7)-(9) complete. In writing (7) we have put the
Prandtl number ¢ equal to infinity. This choice of ¢
eliminates the time derivatives occurring in equation
(2). We note also that equation (7) is the exact momen-
tum equation for o— 0, since the non-linear term dis-
appears in this limit.

We shall refer hereafter to the system described by
(N-(9) as the “nonfluctuating” system, in order to dis-
tinguish it from the real physical system which includes
the fluctuating interactions. This choice of terminology
is motivated by the fact that in (7) and (9) the fluctuat-
ing interactions are omitted, and by the fact that the
resulting system does not fluctuate in time.

The physical significance of omitting the fluctuating
interactions is discussed in IPTC. Here we simply note
that their omission leads to no nonphysical results; the
system (7)-(9) obeys the same conservation laws as
does the complete system and the energy spectrum
associated with (7)—(9) is positive definite. We also refer
the reader to IPTC for a discussion of the qualitative
behavior of the nonfluctuating system. The observa-
tions made there for the free boundary system are pre-
sumably valid for the rigid boundary system also.

b) Fourier decomposition of the equations. It is con-
venient to work with the Fourier components of (7)
and (9) rather than their space variable form. To this
end, we write:

W(r)=n"3 fa(x,y)Wea(z)
O(r,) =2 fu(x,y)Ou(2).

Here {fo(x,y)} is a set of orthonormal functions gen-
erated by the operator V ;? and obeying periodic bound-
ary conditions in the horizontal :

v 12fa (x)y) = *7r2a2f0 (x}y)}
[ fa for| =Baar.
Substituting the above representation into (7) gives

az 2
(-a—;—— 7r2a2> Wa(z)= Ra?0,(3).

%

(10)

We may solve (10) for W, (2) in terms of a given 0,(2)
by constructing the appropriate rigid boundary Green’s
function, G(z|2'):

2

Ra? 1
Wa(z)=——4—/ Ga(z]2) B (z")d7, (11)
T 0

where

d2 2
<d—z—2—w3a2) Glz|2') =% (z—2).
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Here, G(z|z') satisfies the rigid boundary conditions
given by equation (5). The calculation of G(z|z") is
given in Appendix A.

The boundary conditions on © and 8 given by (6)
permit us to write ®, as a sine series and B(z,) as a
cosine series:

0,(z)= i ©,.> sinnnz (12)
1

B(z,t)= 1+§ B cosnms. (13)
1

Introduction of (11), (12) and (13) into the equations of
motion, (8) and (9), gives the following equation for
®e,and B,:

P .
(“'+ﬁ2+a2) @na
or

1 oo
= Wna"}'a Z_l (Bln—ml'—ﬁn+m)Wmu (14)

a
(_+n2)ﬁn
ar

()
= —nz“— ZZZ Wma(®n+ma+a'(m—n)®|m—ﬂ|a)7 (15)

where, " .
Wae=2 / sinnwzwea (z)dz,
0
a(x)=1, x>0
=0, x2=0
=—1, %<0,
and
r=mul.

- The velocity amplitude W,* is related to the tempera-
ture fluctuation field ®<, through equation (11):

Re »
Wﬂa= - Z Gn.m®ma,

7t 1

(16)

where the symmetric Green’s matrix, G, is given by:
1 1

Gujm=2 / / dzds’ sinnrz sinmna'G (2| 2')
0 0

1
“——'—Bn,m
(n2+a2>2
dnmaof (—1)mtm417 (—1)* coshra—1

w (2 +o®)2(m2+a?)? (—1)* sinhma— -

(17
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For the derivation of this, we refer the reader to the
Appendix.

The total heat transported by the system in the
steady state, N, is given by the mean temperature
gradient evaluated at the lower boundary. According
to equation (13)itis

N=1+3 B.. (18)
1

The conservation properties of the rigid boundary
system are the same as for the free boundary system:

> {%(@w)%(mw%)(@m)%}

n,o

. {§<ﬁ)+g}=z W@, (19)

n

d /Bx w2
E(Z)N0-Z T weestt

or\n?

(20)

Equation (19) expresses the conservation of entropy,
and (20) expresses the constancy of total energy flux,
in the steady state. These equations are directly de-
rivable from (14) and (15).

3. Procedure

Our procedure for solving (14) and (15) is to assign
an initial set of amplitudes to ®, and 8, and allow the
system to evolve to its statistically steady state. This
method guarantees the stability of the steady state,
provided a sufficient range of initial data is sampled.
In performing the numerical integration, we discard
those amplitudes which we anticipate will be zero in the
steady state. Since the steady state form of ©.(z) has
even parity about the midpoint z=3, we may discard
its even sine modes. Inspection of (15) then shows that
we may discard the odd cosine modes of 8,. Defining

®a2n—1=0an
B2n= Bn
W 1=w%,
then allows us to abbreviate the system as follows:

Ra?
W=, Gmnlm
T m

(21)

d
L= 1P+ 0

=w,*+3 2 (Bln—ml_6n+m—l)wma (22)
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d _
(——+4n2>5 n
a7

=211 3 W[ Onpmt o (Mm—1—5)0nmis144 ],

m,a

(23)
where,
Omn
Enm=—_———————
[(2n—1)* 42
16a(2n—1)(2m—1) cosh®ra/2

A Qn— 1L [ (2m— 1)+ T sinhratra
(24)

In practice, it is necessary to truncate the above infiinite
set of equations. Our procedure in this matter is to set
all 6, and w, modes above a certain integer, 7, equal to
zero. Equation (23) then implies that all 8, are zero if
n2>2no— 1. This method of truncating the system guar-
antees that the approximate system satisfies the exact
conservation equations for entropy and heat flux. We
note, however, that 8,’s will have appreciable trunca-
tion errors if #>nq.

In most of the numerical calculations, we disregard
the time derivative in equation (23) for 8,, thus putting
the mean temperature field in instantaneous equilib-
rium with the velocity and temperature fluctuation
fields. This procedure greatly hastens the convergence
to the steady state, and a few runs with the time
derivatives present indicate that no unstable steady
states evolve from this procedure.

In the numerical calculation of the temperature
fields 6+(z) and B(2), we use their sine and cosine repre-
sentations, given by (12) and (13). For the velocity
field, it is convenient to use a set of functions, ¢,(z),
which satisfy the velocity boundary conditions. Accord-
ing to equations (11), (12) and (A5) we may write

R. HERRING
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where
eu(2)=sin(2n—1)ms

(2n—1)7w{z sinhma(l1—2z)+ (1 —2) sinhmasz}

sinhra+ra
(25)

By using the set of functions ¢,(z) to represent the
velocity field, we automatically force the truncated
system to satisfy the rigid boundary conditions at any
arbitrary order of truncation #q.

4. Results

a) Single-a amplitudes. The steady state single a
amplitudes are shown in Figs. 1-8 for a range of Ray-
leigh numbers extending from R=4X10® to R=10°
The normalization of W and © is given in the figure
captions, while T(z) requires no normalization. The
values of o in Figs. 1-8 are approximately those for
which the system is stable against small perturbations
at other wave numbers. The method of determining this
a is given in Section 4b. The characteristic shape of these
curves is the same over a wide range of wave numbers,
and their numerical values would not be appreciably
altered if & were changed to that wave number which
maximizes the total heat transport. At low Rayleigh
numbers (R £4X 10%) we expect the calculations to have
good quantitative accuracy even as to the detailed
shape of the profiles.

The amplitudes shown in Figs. 1-8 are qualitatively
very similar to those computed in IPTC for free bound-
aries. The physical interpretation of the features of these
curves as given in IPTC applies to the rigid boundary
calculation as well. The main quantitative difference
between the two calculations is traceable to the fact
that the rigid boundary system has a lower heat trans-

Ra? , port, so that the boundary layer is more extensive.
We(g)=—2" ¢n(2)0,° At large R, we notice that the mean temperature
a1 radient, 8, becomes slightly negative in a region near
g » 9y ghtly neg g
T T R‘_ 3 1 10 : : ; . 1.0 T - T T
o} =4xi0, ma=30 | 8 R=ax0’ Ta= 3.0 z R=4x10% Ta=30
w
08t 1 08 |- -
08 R
r o6 |- B
ost i
06 o
04} 4
o4 | N o4t -
o2+ -
o2 L) - 0.2 L .
ol _
L 1. 1 1 _02 1 1 I' 1 1 1 L | S
0.2 04 06 0.8 z 0.2 04 o X3 o8 z -08 -0.6 7 -04 «0.2
F16. 1. 0.105W and 0.9390 for R =4 103 Frc. 2a. Mean gradient, 8(z), for

and ra=3.00.

R=4X10° and ma=3.0. B(z) is normal-
ized by the total heat transport, N =1.968.

Fic. 2b. Mean temperature T'(z) for

R=4X10% and ra=3.0.
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and ma=15.25.

and ma=35.25. B(z) is normalized by the
total heat transport, N=11.53.

R=10% and ma=35.235.

the boundary (see Figs. 2, 4, 6 and 8), and extremely
small, but positive, in the mid-region of the flow. The
presence of a thin negative 8 region was noted for the
free boundary calculations also, and we interpret it as an
overshoot phenomenon, characteristic of convective
systems of large horizontal scale. For systems having a
small horizontal scale, this behavior disappears. How-

ever, for the latter system, the convective heat trans-
port in the central region is rather small.

The velocity fields given in Figs. 1, 3, 5 and 7 are
dominated by their first mode, ¢1(z) [equation (25)],
with the higher harmonics contributing only a few per
cent to the total amplitude, even at large Rayleigh
numbers. As noted in IPTC, this behavior is attribut-
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F16. 9. Cosine spectrum of the mean temperature gradient for
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able to the fact that the velocity field is marginally
stable on the mean distorted temperature field. The
fact that the velocity field is composed largely of its
first mode indicates the character of the nonlinear
coupling in our system. Thus the small scale motions
receive most of their energy through the interaction of
the large scale motions with distortions in the mean
temperature field. They lose most of their energy by
conduction. The large scale motions, on the other hand,
are quite close to being marginally stable on the large
scale part of the mean temperature field.

The cosine spectrum of the mean temperature gra-
dient, 8, is given in Fig. 9 for R=10¢ 105 108 The
values of a in these graphs are the same as for the ampli-
tudes presented in Figs. 1-8. We have connected the
points with a smooth curve for the sake of clarity. The
tendency for the lower modes to saturate at 8,=2
corresponds to the extremely small gradient outside the
boundary layer. At the larger Rayleigh numbers, the
spectrum is nearly Gaussian at small »#, and decreases
more rapidly at large #. The region of negative 8,’s is
produced by the rigid boundary conditions, and is not
present for the free boundary calculations given in
IPTC. At extremely large #, the B, spectrum decays
exponentially to zero.

The total heat transport as a function of R and « is
given in Fig. 10. The Rayleigh numbers are given in the
figure. These curves are qualitatively similar to the free
boundary calculations, but the value of @ which maxi-
mizes the heat transport increases more rapidly as a
function of R for rigid boundaries than for free bound-
aries. This value of a begins at 0.99 at critical Rayleigh
number (R=1708), and increases approximately lin-
early with RY At large R, the value of ¢ which maxi-
mizes the total heat transport is well represented by*

Tom=23.14-0.096 (R — 1708)3. (26)

In discussions of the relative stability criterion of
Malkus and Veronis, it is necessary to have (32), the
average of the square of 8. Fig. 11 gives (8?) for a range
of @ and R. The principle of relative stability asserts
that the most stable solution is that which maximizes
(8%. According to Fig. 11, the value of @ which maxi-
mizes (82 is given by,

maps=23.14+0.074(R—1708)3. 27)

It should be noted that both the above principles (the
principle of maximum heat transport, and the principle
of maximum (8?)) have an R¥ law for the Nusselt num-
ber at large R. This is shown in Fig. 12. The curve
marked N, gives the heat transported by the stable

1 Equation (26) is intended to represent the dependence of am
on R only over the range of R covered by the present calculation
(R£10%). At larger R this dependence may become weaker than
R, Preliminary investigations of the free-boundary problem at
R =10"indicate that am(R) does in fact have a weaker dependence
on R than R} at extremely large R.
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single-a solutions to be discussed in the next section.

For R 2 10* the principle of maximum heat transport
gives

N=0.135R? (28)
while the principle of maximum (8?) gives
N=0.133R%, (29)

b) Stability of the single-a solutions. The solutions ob-
tained in the preceding sections are stable against arbi-
trary perturbations of the same horizontal wave number
for which the fields were computed. This stability is
inherent in the integration methods used to obtain these
solutions. The stability against disturbances of wave
numbers ¢, other than that wave number which sup-
ports the convection process, has not yet been assured
and we investigate here the case of small amplitude dis-
turbances. We suppose that small disturbances 8w,
and 80, are introduced into the steady state system
62w> and fB. According to equations (21), (22), and
(23), 86~ satisfies the following equation

3
<—+ A)Bo"" = Ra?B(8) 06~

(30)
ar

Here, 80" is the vector (86,%',80:%',---) and A and B are
the following matrices:

A= (n*+a'?)8um
B(B) = 6mn+% (Bl n—m' - Bn-{-m—l)o

g is the Green’s function matrix given by equation (24).
In this analysis, 86«" and §w*’ are assumed to be so small
that we may neglect their quadratic terms which modify

2 The stability analysis discussed here assumes that o — 0.

Fi16. 13. Stability diagram for R=105 « is the wave number

that supports the convection and «’ is the wave number of the
small perturbation.

the mean temperature gradient, 8. Since (30) is linear, it
has solutions

a'=e'q¢1//
(n+ AW=RB(B)gy.

where,

(31

The steady state solutions (8, w, and B8) will be stable if
all eigenvalues, 7, have negative real parts. It should be
noted that 5 depends on &' through A and g, and for
complete stability, the n(e)’s should be nonpositive for
all .

For free boundaries it follows from a theorem of
Spiegel (1962) that the eigenvalues, 7, all have negative
real parts if the following condition is met:

R<R, (o), for all &' - (32a)
Here R, is the smallest eigenvalue of
Ay=R"B(B)gd. (32b)

For free boundaries, g consists of only the first member
of equation (24), and is diagonal. The case of a=a’ is
quite difficult to analyze, because linear perturbations
on the mean field B are induced. However, for a=¢,
(32b) is the same equation satisfied by 6%, so that
stability in this case is ensured by the integration
technique.

For rigid boundaries, there exists no proof that con-
dition (32) implies stability, unless the B (8) matrix is
unity. The difficulty is that for rigid boundaries, g is not
diagonal, and equation (31) cannot be put into a gen-
eralized Hermitian form, which is a necessary step in
the proof of the exchange of stabilities. In the present
analysis, we assume without proof that the mean temp-

erature field is such that condition (32) implies complete
stability.
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The calculation of the eigenvalue R.(¢) is con-
veniently carried out by means of a standard iteration
technique (Hildebrand, 1962). Thus,

1 i (x| 4"[x)

=1

m M
o?R, ™ <X( At { X)

(33)

where,
A= A"1Bg.

In (33), x is a trial vector which we may conveniently
take as,

]X>= (1)010:' ) )

The iteration method converges quite rapidly because
of the structure of the matrix g.

Fig. 13 gives the results of the stability analysis for
R=105. In this figure, the shaded and crosshatched
areas indicate the region for which R,'<R. ais the wave
number which supports the convection, and o' is the
wave number of the small perturbation. The unstable
regions are bounded by lines of marginal stability. The
point, a,” at which the two lines of marginal stability
cross is that wave number for which the single-a
system is completely stable to small perturbations of
any wave number ¢’

The calculations at lower Rayleigh numbers are
qualitatively similar to that shown in Fig. 13; they all
indicate an a, for which the single-a system is completely
stable.

The crosshatched regions in Fig. 13 are zones of
(a,0’) in which there exist steady state solutions com-
posed of two distinct a-modes, §%, and §=". We may infer
the existence of these solutions by the following experi-
ment. First, we assume that a single-a solution has
developed to its steady state, 2. A small but arbitrary
perturbation 6% is then introduced into the system,

9 T T T T T T T L T 1

ma,
s} ]

o 1 1 1 1 I3 1 L 1 ] 1
0 20 30 40 S50 €0 70 80 90 100 NO

RY,

3

Fi1c. 14. Horizontal wave number, mas, of the single—a stable
solutions as a function of R,
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and we suppose that 60% initially grows. The system,
62466 may now develop into a single o/ mode, with 8«
decaying to zero, or it may develop into a two mode
system, with 6= and 6« having finite amplitude. If the
first alternative is achieved, the point (¢/,a) must lie in
the stable, unshaded region in Fig. 13. If, on the other
hand, (¢/,a) is also in the unstable zone, we conclude
that the steady state system contains both modes, 62,
and 9%. The crosshatched regions are then zones in
which both (a,0) and (¢/,a) are in the unstable region.
This region is vanishingly small at R=10% and grows
with increasing R. We investigate the stability of these
two mode solutions in Section 4c.

The calculated o,(R) is given in Fig. 14, for RS
X105 The value of a, is 3.11 at the critical Rayleigh
number (R=1708), and increases monotonically with
increasing R. The heat transported by these stable
solutions is given by the curve marked N, in Fig. 12.

Above R=2x10%, the linear analysis indicates that
there are no stable single-a solutions. This fact is il-
lustrated in Fig. 15, which gives the R. for ma=35.3,
and R=10°. In this case, the R, curve drops below R in
two separate disconnected ranges of o/. At smaller R,
the corresponding curves have no secondary minimum
at the larger o/, but are distorted—in the range of large
o/—in such a manner as to make the appearance of a
secondary minimum a consequence of increasing R
above some threshold value. The value of this threshold
lies between 5X 105 and 10%; we have not located it more
accurately at present. The stability analysis at R=108
is given in Fig. 16.

¢) Multi-a results. The analysis of the preceding para-
graphs has permitted an identification of the stable,
single-a solutions to the equations of motion (21), (22)
and (23). In addition to these single-a solutions, there
may also be multi-a solutions, which are stable against
small perturbations. In fact, the stability analysis has

Reld) 1.08 ———1— T T T T 7T T
R

106

[

104 ~
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o8 R=10% 7a = 5.30

96 |- i
94t .

92 E

80 2 A 1 Bl ) 1 1 ) 1

Fi1G. 15. Critical wave number, R.(a’) for R=10% and wa=5.25.
' is the wave number of the small perturbation.
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already indicated that solutions with two o’s exist in a
restricted region of (,&’), although the stability of
these double-a solutions has not yet been investigated.
To investigate the possibility of multi-a solutions, we
introduce a set of arbitrary amplitudes, 6%, as initial
data into equations (21), (22) and (23), and allow the
system to evolve to its steady state. The results of this
phase of the investigation indicates that for RZ10°
there are no stable multiple-a solutions. ‘

The numerical integrations of the multi~a system
indicate that it evolves either into a single or double-a
steady state. The double-a steady states may occur if
two of the s lie in crosshatched regions as shown in
Fig. 13. However these double-a solutions’are not
stable to disturbances of wave number between the
o’s of the double-a steady state. In the following para-
graphs, we give two examples of the multi-a study; one
case in which a single a survives to form a steady state,
and the second in which two o’s form a steady state of
the unstable sort mentioned above. In these two ex-
amples, we discard the time derivative of 8. The tran-
sient behavior of the system is shown only to illustrate
the stability properties of the system.

Fig. 17 displays the evolution of a multi-a system for
R=10% This figure shows the development of the first
sines modes, 6,%, for a group of 4 wave numbers, ra=
2, 3,4 and 5. The total heat transport N (¢) is also given
in Fig. 17. The scale for N is given to the right of the
figure. The initial conditions are ;% (:=0)=0.10, and
6,%=0, for n>1. We observe that the modes with
ma=2,4 and 5 decay to zero with only the ma=23 mode
surviving in the steady state. That the mode with
ma=23 survives may be partially anticipated from the
linear stability analysis, since the stable single-a solu-
tion at R=10* has wa=3.2. The time scale for the re-
laxation of this system is long compared to the growth
rate of any of the modes from the conduction state
(r=~0.11 for ma=23.0). It is interesting to observe that
the mode ma=4 actually increases initially, and decays
only after the total heat transport has almost relaxed
to its steady state value.

As a second example of a multi-¢ system, we select
the double-a system for which wa;=1.7, may=28.0, and
R =105, According to the stability analysis (see Fig. 13),
this system should develop into a double-a steady state.
Its evolution from the initial conditions #,*=6,*2=0.1,
6,%=0,n>1 is given in Fig. 18. The amplitude of the a;
mode appears to be concentrated more strongly in the
boundary region than the o; mode, which has a rela-
tively large amplitude in the body of the fluid. The
Nusselt number for the combined system is 5.53, as
compared to 4.35 and 6.30 for the single-a systems at
ma=1.7 and 7a= 8.0, respectively.

The stability analysis for the above double-a system
is given in Fig. 19. The system is apparently unstable
to any small perturbations whose value of o is between
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a; and a,. The development of the system subsequent to
an introduction of a small disturbance at ra=3.2 is
shown in the right hand portion of Fig. 18.

As observed earlier, there appear to be no stable
single-a solutions for R2>10%. The results of the sta- -
bility analysis (Fig. 15) suggest that for R larger than
some critical value ~108, the stable steady state con-
sists of two distinct e-modes. The numerical studies of
multi-a systeins at R=10% indicate that the mode hav-
ing the smaller o achieves a relatively large amplitude,
with the mode of larger a contributing only a negligible
amount to the advective heat transport. For example,
at R=10%, and wey=135.25, 7as=9.50, 6;%/0,%=20.465
X 1072, The mean temperature profile for the above two
component system is only negligibly changed by the
presence of the second mode at ma=9.5. At larger Ray-
leigh numbers, this second mode (as well as others) may
become significant. These results for large R are pre-
liminary—a more detailed and extensive study will
be undertaken as more appropriate numerical tech-
niques are developed.

d) Some comments on the relative stability criterion of
Malkus and Veronis. The stable single-a solutions de-
scribed in the preceding section are not those for which
(8%) is maximum (cf. Figs. 11 and 14). These results are
therefore counter-examples to the relative stability
criterion proposed by Malkus and Veronis (1958) and
Malkus (1959). This principle is based on certain inte-
gral properties of the equations of motion; it is therefore
necessary to inquire why it is not applicable to the non-
fluctuating system considered here. The fact that it is
not valid for the nonfluctuating system would appear to
vitiate its usefulness in any discussion of the stability
properties of the complete convection equations.

As applied to the system investigated here, the
relative stability criterion asserts that a particular
solution, w®, 6%, and B, is stable with respect to a small
disturbance having the form of another solution,
sw’ = Aw* ,60%' = 4% (A1), provided (B.2)> (B2).
Here B, is the mean temperature gradient which the
fields Aw* and 46 would support if they had finite
amplitude, 4 =1. We assume in the following discussion
that the eventual state of the system consists of only
one of the wave numbers, a or ', but not both.

The relative stability criterion is based on the fact
that at the instant the disturbance 46* is introduced
into the system,

<0

7=0

Ly 1) (310)
dr
provided that
<Bl2> > <BH>.
8 Malkus and Veronis assume perturbations in » and 6 have the

form, 4w, and B#'. However, in the limit ¢ — 0, it follows from
(7) that 4 =B.

(34b)
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F16. 16. Stability diagram for R =108 « is the wave number
that supports the convection and «’ is the wave number of the
small perturbation.
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Fi1c. 18. (a) The development of a double-a system, may=1.7,
wa;=8.0, to steady state, The figure shows the evolution of the
first sine modes of the temperature fluctuation field, 6,%, and the
evolution of the total heat transport. The scale for N is to the
right of the figure. (b) The development of the system comprised
initially of the steady state form of the double-a system de-
scribed in Fig. 18a, plus a small perturbation at wa,=3.20.

For the proof of conditions (34), we refer the reader to
the papers of Malkus and Veronis (1958), and Malkus
(1954).

In order to prove relative stability one would have to
show that (34b) is a sufficient condition for (34a) not
only for 7=0 but also for all times subsequent to 7=0.
If such a proof could be made, we would have found
that the stable solutions were also those which maxi-
mize (3?). Since this is not so, we may conclude that if
the stable solution is introduced as a small perturbation
on the one that maximizes (5?), it will initially decrease,
in conformity with inequalities (34), but will later in-
crease and dominate the convection, and the mode that
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R=10%, 8%(0)=0.10, wai =(2,3,4,5}
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Fic. 17. The development of a four wave number system to
steady state. The figure shows the evolution of the first sine modes
of the temperature fluctuation fields, 8,%, and the evolution of the
total heat transport, N. The Rayleigh number and the values of «
are given in the figure.

_R_a' T T T T T T T T T T T
R 5
7a, =170, wa, =80, R=I10
30 J
20 | _
1.0
M
S— . L 1 1 1 il — —) — — 1
1 2 3 4 5 6 7 8 9 0o 12
T

Fic. 19. Critical Rayleigh number, R.(a) for the system de-
scribed in Fig. 18a. The two values of « which support the
convection are designated as ¢; and aq.

maximizes (82) will decay to zero amplitude. This is
indeed the case, as is illustrated in Fig. 20. This figure
shows the initial development of {|88%¢|2) for a small
perturbation §6*2 subsequent to its introduction into the
system, 61,8,,, which maximizes {82). The initial form
of 86*2 is that of the stable solution found from the
linear analysis with the initial amplitude reduced by a
factor of 100. The value of R and the wave numbers a;
and o, are given in the figure caption. We note that after
the initial decrease predicted by (34), (]8622|2) increases
sharply. A continuation of the calculation for +>0.1
shows that 6622 eventually grows to full amplitude while
6«1 decreases to zero. The behavior of the a» mode
shown in the figure is entirely in the linear regime; the
amplitudes 6! and 8., remain constant to one part in
10* for r <0.3.
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The failure of the relative stability criterion stems
from the fact that the small disturbance at wave num-
ber o is adequately represented by the form 46 only
immediately after its introduction into the system. At
any finite time after introducing the disturbance it
contains components linearly independent of 8+, which
are excited by the interaction of 8= with the mean-
distorted temperature field. These components either
return amplitude to 6" or drain more amplitude from it.
Which of these alternatives happens depends sensitively
on the detailed shape of mean temperature field, and
apparently cannot be inferred from a knowledge of
only a single moment such as (8?).

5. Discussion of results and conclusions

The results presented in Section 4 appear to have the
correct qualitative behavior in many respects. The
sharp boundary layering of the mean temperature field
at large Rayleigh numbers, and the R} law for the
Nusselt number which was recovered by the calcula-
tion are consistent with the supposition that a large
part of the dynamics of convection is contained in the
fluctuating mean interactions, together with the seli-
distortion of the mean temperature field produced by
the motions themselves. On the other hand, there are
certain respects in which the non-fluctuating system
appears to be unrealistic. Thus, the stable amplitudes
are steady in time, and contain only one horizontal
wave number. In addition, the Nusselt number is in-
dependent of the Prandt] number, o, so that the system
can be realistic only for s— .4 In the following para-
graphs we shall discuss in detail the realism of the non-
fluctuating system.

The most satisfactory way of assessing the realism
of the nonfluctuating system would be to introduce a
realistic approximation for the fluctuating terms into
the equations of motion and compare the answers for
the resulting system to the present calculation. At
present, we have only preliminary results for such a
comparison at large o(¢ — «). The temperature fluc-
tuation field was represented by three amplitudes
6%1(z), 822(z), and 6+3(z). The wave vectors w; formed a
closed triangle, and all couplings among the 6% pre-
scribed by the last term of equation (2) were retained
(in both the vertical and horizontal). The heat trans-
port for this calculation (at R=10%) is within about
10 per cent of that found for the nonfluctuating system.
This representation of the fluctuating interactions is
crude, and we mention it here only to indicate the order
of magnitude of the estimated error at large o.

A direct test of the realism of the nonfluctuating
system is to compare it to experiment. The most im-
portant single quantity it should correctly predict is the
Nusselt number, and its dependence on the Rayleigh

¢ See Kraichnan (1962, p. 1377 et seg.) for a discussion of this
point.
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Fie. 20. Test of the relative stability criterion. The figure shows
the initial development of the mean squared temperature fluctua-
tion, (|89+2|2), for a small disturbance 882 whose form is that of
the stable solution. The disturbance 8622 is introduced as a small
perturbation into the system which maximizes (82). The initial
amplitude of 8622 is 100 times smaller than its steady state value.

number. We may also compare to experimental data its
predictions for the mean temperature field, 7' (z), and
for the horizontally averaged rms temperature and
velocity fluctuations, §(z) and @(z), and 7. For the
Nusselt number there exist fairly accurate experiments
with which the results may be compared. As for 6, @,
and T, we must relay on the less quantitative mixing
length estimates, because of the lack of experimental
data. In making the comparison with experiments, we
choose those data for which ¢ is as large as possible.

Experimental data for the total heat transport are
available for fluids of large Prandtl number, o. Globe
and Dropkin (1959) and Silveston (1958) have meas-
ured the convective heat transport for silicone oils, as
well as for other fluids. The range of ¢ for the experi-
ments of Globe and Dropkin extended up to ¢=8750,
while Silveston’s measurement extended to o=3000.
At large R, Globe and Dropkin report a value of
N/R}=0.134, at 0=8750. Silveston’s data at large o
(550%53000) is well represented by N/Ri=20.09.
Actually, Silveston fits his data by the power law,
N~0.10 R0-3 ¢0-% and Globe and Dropkin represent
their data by N~0.069R3,°%, The Prandtl number
dependence given by the above formulas is none too
certain, especially at very large o. At sufficiently large
o, we expect N to be independent of ¢. This follows from
an inspection of the nondimensional equations of
motion (1)-(4). Above what value of ¢ the ¢ dependence
of N disappears is not yet known, but the mixing length
estimates of Kraichnan (1962) suggest it to be at
a~300. '

In comparing the above experimental data to the
numerical calculations, we shall select those solutions
which are stable against small perturbations. This
choice appears to be most natural, since the nonfluctuat-
ing system possesses its own stability properties, and
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requires no additional constraints such as maximum
heat transport or maximum {B%) to make its dynamics
complete. For these solutions, the heat transport at
large R is given by

N=0.1153R%. (35)

Actually, the use of Np.x given by equation (28) or the
N which characterizes those solutions which maximize
{8%) as given by equation (29) would not significantly
change the numerical comparison. We observe that N
as given by (35) is about 17 per cent smaller than the
experimental results of Globe and Dropkin, and about
20 per cent larger than the results of Silveston for large
o fluids. _

With regard to the profiles, T(z), w(r), and ©(r),
there are, unfortunately, not many accurate data with
which to compare them. The only experimental data for
the profiles are those of Townsend (1959), who measured
them for air (¢=0.74). Townsend did not have an
upper boundary in his experiment, so that it is not clear
how to compare his ‘measurements with the present
calculation. He found that the experimental data out-
side the boundary—which had considerable scatter—
was best fit by a 72 law for 23— T and a 26 law for 6.

On the other hand, Kraichnan (1962) has made mix-
ing length calculations of the profiles for arbitrary o.
For large o, he finds 3— T~z w~3z, and §~z1, pro-
vided z is larger than the thickness of the conduction
boundary layer, 0.5/N, but less than the viscous
boundary 6.4 o%/N. For sufficiently large o the latter
exceeds the distance between the conducting plates.
Kraichnan furthermore estimates that for air (¢=0.74),
the z! regime is so thin that it may be difficult to ob-
serve experimentally.

The rms values of the fluctuating fields », and 8 com-
puted here may be represented by the following power
laws outside the conduction boundary layer:

W(Z)=20.15R% (36)
1

§(2)=20.78—.

8(2) e (37)

The above formulas were obtained by fitting the nu-
merical profiles exterior to the boundary layer by power
laws. Their accuracy is ~10 per cent for 0.1 <z<0.3,
and for R>105. The powers of R in (36) and (37) are not
determined with great accuracy by the numerical fitting
procedure. Their validity appears to be approximately
1/NSZ<1 We observe that (36) and (37) are con-
sistent with Kraichnan’s mixing-length estimates.
They appear to have the same dependence on R, and
the numerical coefficients also appear to be consistent
with his. His numerical values of the coefficients in (36)
and (37) are 0.095 and 0.96, respectively. The numerical
discrepancy is due in part to the fact that Kraichnan
estimates the value of N/R#as 0.089,
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The computed mean temperature profile, 7(z), has
generally the correct form but 3— 7 does not follow a
z! law, as predicted by Townsend’s data, and by the
mixing-length estimates of Kraichnan. The 27! be-
havior is prevented by the development of a thin
stabilizing layer [B(z) <07] just exterior to the thermal
boundary layer. Beyond the stabilizing layer, 8 be-
comes positive, and 1 — T' apparently may follow a Z~!
law, at large R. This is indicated by preliminary
analytic studies of the nonfluctuating system and is
suggested by an examination of the numerical calcula-
tions. However this behavior beyond the stabilizing
layer is probably only qualitatively correct; the mixing-
length estimates indicate that — T+3~#, whereas our
numerical calculations at R=106 have —T43~4X 10-%9
for values of z larger than the boundary layer thickness.

We interpret the presence of a stabilizing region
(8<0) in the mean temperature profile as an explicit re-
sult of the omission of the fluctuating interactions. Its
role in the dynamics of the nonfluctuating system is
to quench the development of large scale motions which
absorb relatively large amounts of heat from the lower
boundary and lose little of their buoyancy and momen-
tum by molecular dissipation. If the fluctuating inter-
actions had been included, the presence of such a re-
gion would not be necessary, because the large scale
motions would lose their temperature excess and mo-
mentum by eddy conductivity and eddy viscosity.

The existence of a stabilizing region for the non-
fluctuating system is necessary if the Nusselt number
follows a R} law at large R. This may be seen by the
following argument. If we assume that the mean
temperature gradient, 8(z), is known, we may regard
the steady state equations satisfied by w and ¢ as an
eigenvalue problem for the determination of R as a
function of N=pg(0). This problem is the same as the
linear stability problem with o’ =a, and may be solved
by the technique given in Section 4b. We note that as
the problem is posed, R is a function of the o which
supports the motion, so that for a fixed N one chooses
that a for which R is minimum, in order to achieve
stability. We may now ask what features B(z) must
have in order to obtain N~RY If B(z) is positive
throughout the region of convection, one may show,
using the methods of IV b, that N~ R}, for any reason-
ably choice for B(z). Hence, we may conclude that an
R*law is incompatible with an entirely positive 8 for the
nonfluctuating system. If we permit 8 to be negative,
we may obtain an R? law by judiciously choosing the
extent and magnitude of the negative 8 region.

In conclusion, we may infer from the above discussion
that the nonfluctuating system has reasonably good
quantitative accuracy for the total heat transport, N,
for large Prandtl number fluids. We are prevented from
drawing definite conclusions about the exact magnitude
of its error by the lack of self-consistent experimental
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data at large o. Preliminary numerical estimates of the
influence of the fluctuating self-interactions on the total
heat transport suggest that the nonfluctuating system
is in error by about 10 per cent for c—.

The rms values of the fluctuating amplitudes, w
and ©, appear to be consistent with the mixing length
estimates of Kraichnan. This fact is somewhat sur-
prising in that the mixing-length theory assumes—
exterior to the boundary layer—that the fluctuating
mean interaction is balanced by the fluctuating inter-
actions. Our procedure omits the latter entirely. Per-
haps the nonlinearities in the nonfluctuating system are
self-compensating in this respect.

The most obvious unrealistic feature of the system is
the overshoot region in the mean temperature field.
As stressed above, this behavior can be removed only
by the introduction of estimates for eddy processes
into the equations of motion.
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APPENDIX

In this section we compute the rigid boundary
Green’s function, G(z|2’) and its sine-transform matrix,
Grn.m® G(z|3') satisfies

d2 2
(——7r2a2> G(z|7)=n*%(2—2) (A1)
dz?
with the boundary conditions,
oG
G,(0]2")=—(0]2")=0,
0z
(A2)

G
G-(1] z’)=-(—3;(1 |2)=0.

For free boundaries, the corresponding Green’s function,
G(z]2') is conveniently represented by a sine series:
5 The calculation of G presented here is similar to a correspond-

ing calculation in the stability of Couette flow. See Chandrasekhar
(1962, p. 300 et seq.).
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G el 2)=2 i sinnws sinnwrs’ (A3)

1(z]5)= _— 3
T (n2+a2)?

Since G, and Gy satisfy the same differential equation,
they differ only by the homogeneous solution to (Al):

G.(2]2)=Gs(z|2")+A(2') sinhwaz
+B(2') sinhmaz+C(z")zcoshraz. (A4d)

The coefficients 4, B, and C are obtained by demanding
that G,, as given by (A4), satisfies the boundary con-
ditions (A2). Denoting the homogeneous solution by
y(z|2"), we find

| 1 3G,
y(z]2) =——(0|2"){ma(1—2) sinhmaz
A 9z
—z sinhwa sinra(1—32)}
190G,
+——1]2"){—rz sinra(1—32)
A 0z

+ (1—32) sinhwe sinhmoz}
where
A= sinh’ra—r%a?.

(AS)

The derivatives of G, occurring in (AS5) may be com-
puted from (A3). Using (AS), (A4), and (A3), we may
compute the matrix G, m. The result is given by equa-
tion (17).
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